

CONVERSANT® System
Version 8.0
Application Development with
Siebel eBusiness

585-310-784
Issue 2

September 2001

© 2001, Avaya Inc.
All Rights Reserved

Notice
Every effort was made to ensure that the information in this book was
complete and accurate at the time of printing. However, information is
subject to change.

Preventing Toll Fraud
“Toll fraud” is the unauthorized use of your telecommunications system
by an unauthorized party (for example, a person who is not a corporate
employee, agent, subcontractor, or working on your company's behalf).
Be aware that there may be a risk of toll fraud associated with your
system and that, if toll fraud occurs, it can result in substantial additional
charges for your telecommunications services.

Avaya Fraud Intervention
If you suspect that you are being victimized by toll fraud and you need
technical support or assistance, call Technical Service Center Toll Fraud
Intervention Hotline at +1 800 643 2353.

Providing Telecommunications Security
Telecommunications security (of voice, data, and/or video
communications) is the prevention of any type of intrusion to (that is,
either unauthorized or malicious access to or use of your company's
telecommunications equipment) by some party.
Your company's “telecommunications equipment” includes both this
Avaya product and any other voice/data/video equipment that could be
accessed via this Avaya product (that is, “networked equipment”).

An “outside party” is anyone who is not a corporate employee, agent,
subcontractor, or working on your company's behalf. Whereas, a
“malicious party” is anyone (including someone who may be otherwise
authorized) who accesses your telecommunications equipment with
either malicious or mischievous intent.

Such intrusions may be either to/through synchronous (time-multiplexed
and/or circuit-based) or asynchronous (character-, message-, or packet-
based) equipment or interfaces for reasons of:

• Utilization (of capabilities special to the accessed equipment)
• Theft (such as, of intellectual property, financial assets, or

toll-facility access)
• Eavesdropping (privacy invasions to humans)
• Mischief (troubling, but apparently innocuous, tampering)
• Harm (such as harmful tampering, data loss or alteration,

regardless of motive or intent)

Be aware that there may be a risk of unauthorized intrusions associated
with your system and/or its networked equipment. Also realize that, if
such an intrusion should occur, it could result in a variety of losses to your
company (including but not limited to, human/data privacy, intellectual
property, material assets, financial resources, labor costs, and/or legal
costs).

Your Responsibility for Your Company’s Telecommunications
Security
The final responsibility for securing both this system and its networked
equipment rests with you - an Avaya customer's system administrator,
your telecommunications peers, and your managers. Base the fulfillment
of your responsibility on acquired knowledge and resources from a
variety of sources including but not limited to:

• Installation documents
• System administration documents
• Security documents
• Hardware-/software-based security tools
• Shared information between you and your peers
• Telecommunications security experts

To prevent intrusions to your telecommunications equipment, you and
your peers should carefully program and configure your:

• Avaya-provided telecommunications systems and their inter-
faces

• Avaya-provided software applications, as well as their under-
lying hardware/software platforms and interfaces

• Any other equipment networked to your Avaya products.

Federal Communications Commission Statement
Part 15: Class A Statement. This equipment has been tested and found
to comply with the limits for a Class A digital device, pursuant to Part 15
of the FCC Rules. These limits are designed to provide reasonable
protection against harmful interference when the equipment is operated
in a commercial environment. This equipment generates, uses, and can
radiate radio frequency energy and, if not installed and used in
accordance with the instruction manual, may cause harmful interference
to radio communications. Operation of this equipment in a residential
area is likely to cause harmful interference, in which case the user will be
required to correct the interference at his own expense.

Part 15: Class B Statement. This equipment has been tested and found
to comply with the limits for a Class B digital device, pursuant to Part 15
of the FCC Rules. These limits are designed to provide reasonable
protection against harmful interference in a residential installation. This
equipment generates, uses, and can radiate radio-frequency energy and,
if not installed and used in accordance with the instructions, may cause
harmful interference to radio communications. However, there is no
guarantee that interference will not occur in a particular installation. If this
equipment does cause harmful interference to radio or television
reception, which can be determined by turning the equipment off and on,
the user is encouraged to try to correct the interference by one or more of
the following measures:

• Reorient the receiving television or radio antenna where this
may be done safely.

• To the extent possible, relocate the receiver with respect to
the telephone equipment.

• Where the telephone equipment requires ac power, plug the
telephone into a different ac outlet so that the telephone
equipment and receiver are on different branch circuits.

Part 15: Personal Computer Statement. This equipment has been
certified to comply with the limits for a Class B computing device,
pursuant to Subpart J of Part 15 of FCC Rules. Only peripherals
(computing input/output devices, terminals, printers, etc.) certified to
comply with the Class B limits may be attached to this computer.
Operation with noncertified peripherals is likely to result in interference to
radio and television reception.
Part 68: Network Registration Number. This equipment is registered
with the FCC in accordance with Part 68 of the FCC Rules. It is identified
by FCC registration number xxx.
Part 68: Answer-Supervision Signaling. Allowing this equipment to be
operated in a manner that does not provide proper answer-supervision
signaling is in violation of Part 68 rules. This equipment returns answer-
supervision signals to the public switched network when:

• Answered by the called station
• Answered by the attendant
• Routed to a recorded announcement that can be adminis-

tered by the CPE user

This equipment returns answer-supervision signals on all DID calls
forwarded back to the public switched telephone network. Permissible
exceptions are:

• A call is unanswered
• A busy tone is received
• A reorder tone is received

Canadian Department of Communications (DOC)
Interference Information
This digital apparatus does not exceed the Class A limits for radio noise
emissions set out in the radio interference regulations of the Canadian
Department of Communications.
Le Présent Appareil Nomérique n’émet pas de bruits radioélectriques
dépassant les limites applicables aux appareils numériques de la class A
préscrites dans le reglement sur le brouillage radioélectrique édicté par le
ministére des Communications du Canada.

European Union Declaration of Conformity
Avaya Business Communications Systems declares that equipment
specified in this document conforms to the referenced European Union
(EU) Directives and Harmonized Standards listed below:

EMC Directive 89/336/EEC
Low Voltage Directive 73/23/EEC

The “CE” mark affixed to the
equipment means that it
conforms to the above Directives.

Trademarks
-- CONVERSANT is a registered trademark of Avaya, Inc.
-- Vonetix is a registered trademark of Gold Systems, Inc.
-- Siebel is a registered trademark of Siebel Systems, Inc.

Ordering Information
Call: Avaya Publications Center

Voice +1 800 457 1235
Fax +1 800 457 1764
International Voice +1 410 568 3680
International Fax+1 410 891 0207

Write: Globalware Solutions
200 Ward Hill Avenue
Haverhill, MA 01835 USA
Attention: Avaya Account Manager

Email: totalware@gwsmail.com

Order: Document No. 585-310-784, Issue 2
September 2001

You can be placed on a Standing Order list for this and other documents you
may need. Standing Order will enable you to automatically receive updated
versions of individual documents or document sets, billed to account
information that you provide. For more information on Standing Orders, or to be
put on a list to receive future issues of this document, please contact the Avaya
Publications Center.

Warranty
Avaya Inc. provides a limited warranty on this product. Refer to the “Limited
use Software License Agreement” card provided with your package.

Avaya National Customer Care Center
Avaya provides a telephone number for you to use to report problems or to ask
questions about your contact center. The support telephone number
is 1-800-242-2121.

Avaya Web Page
http://www.avaya.com

Comments
To comment on this document, return the comment card at the end of the
document.

Acknowledgment
This document was written by the CRM Development group of Avaya
University

http://www.avaya.com

v

Introduction

Prerequisites . vii
Basic concepts . viii
Creating an application . ix

Identifying data to be transferred

Data on Siebel eBusiness . 1
Data on CONVERSANT . 2

Setting up Siebel

Siebel overview. . 3
Integration objects . 4
Workflows. . 5
Document Type Definitions . 6

XML templates

Overview . 9
Interpreting DTDs. . 10
Creating the template. . 12

Queries and updates

Overview . 13
The Vonetix interface . 13
Performing queries and updates . 15

Sample application

Overview . 17
XML documents . 20

Query . 20
Query returned . 20
Update . 21
Update returned . 21

Voice@Work application detail . 22
Passing calls and information to a Siebel agent 23
Balance queries and fund transfers. . 26

CONVERSANT System
Version 8.0

Application Development with Siebel eBusiness

Contents

vi

Contents

Query . 27
Setting up a transfer . 31
Updating Siebel eBusiness to perform a transfer 35

Appendix A: References

Siebel eBusiness . 39
CONVERSANT . 39

Prerequisites

Issue 2, September 2001 vii

Introduction

This document describes how to create applications for CONVERSANT
System Version 8.0 that can exchange data with Siebel eBusiness
products.

Prerequisites

The following assumes:

� Familiarity with Siebel eBusiness (setup, administration, and use).

� Familiarity with CONVERSANT application development, preferably
using Voice@Work.

� Familiarity with the Extensible Markup Language (XML).

Any CONVERSANT system running an application to interface with
Siebel eBusiness needs to have Gold Systems Vonetix version 2.1 or
higher loaded on the system.

Introduction

viii CONVERSANT System Version 8.0 Application Development with Siebel eBusiness

Basic concepts

As shown below, applications on CONVERSANT exchange information
with Siebel eBusiness databases using XML documents. This is
facilitated by Vonetix middleware on CONVERSANT and the Business
Integration Manager on Siebel eBusiness.

CONVERSANT and Siebel eBusiness

Vonetix enables the application to read, create, and send XML
documents from CONVERSANT. The Business Integration Manager
manages the translation and transfer of XML documents within Siebel
eBusiness, and accesses Siebel eBusiness databases using abstract
objects that encapsulate the data of interest.

If the Computer Telephony Integration (CTI) feature is being used, then a
call can be passed to the Siebel operator from CONVERSANT.
Information inserted by the application into the UUI field will then
automatically be transferred to the Siebel eBusiness Desktop (as a
“screen pop”). For information regarding the CTI feature, see
CONVERSANT System Version 8.0 Computer Telephony Integration,
585-352-200.

Creating an application

Issue 2, September 2001 ix

Creating an application

There are several basic steps involved in creating an application on
CONVERSANT to access and/or send data to a Siebel eBusiness
database. These steps provide the basic organization of this guide for
application developers:

1. Identify which data will be transferred from Siebel eBusiness to
CONVERSANT. See Chapter 1: Identifying data to be transferred on
page 1.

2. Identify which data will be transferred from CONVERSANT to Siebel
eBusiness. See Chapter 1: Identifying data to be transferred on
page 1.

3. Create a Siebel integration object that represents the data of
interest. See Chapter 2: Setting up Siebel on page 3.

4. Create a workflow within Siebel eBusiness that manages the
exchange of information between Siebel eBusiness and
CONVERSANT. See Chapter 2: Setting up Siebel on page 3.

5. Use Siebel eBusiness to generate a document type definition (DTD)
for each integration object. See Chapter 2: Setting up Siebel on
page 3.

6. Use the DTD (from Step 5) to create an XML template for files that
will be sent from CONVERSANT to Siebel eBusiness. See Chapter
3: XML templates on page 9.

7. Create the CONVERSANT application using either Voice@Work or
Script Builder. The application uses the XML template to generate
an XML document which is sent to Siebel eBusiness. See Chapter
4: Queries and updates on page 13.

A sample application is provided at the end of the document. See
Chapter 5: Sample application on page 17.

Introduction

x CONVERSANT System Version 8.0 Application Development with Siebel eBusiness

Data on Siebel eBusiness

Issue 2, September 2001 1

Chapter 1 Identifying data to be transferred

An application on CONVERSANT will be doing one or both of the
following:

� Querying Siebel eBusiness for information in a Siebel database
(retrieve data from Siebel eBusiness).

� Updating a Siebel eBusiness database (send data from
CONVERSANT to Siebel eBusiness).

The first task for the application developer is to decide what data is of
interest, and where it is.

Data on Siebel eBusiness

Data on Siebel eBusiness resides in standard database files, organized
according to what Siebel calls the “Siebel Data Model”.

The data is accessible through object-oriented software. The software
enables a user to group related data from various parts of the database
into a “business object” which can be treated as a unit.

EXAMPLE:

Names, occupations, and ages could be manipulated together as a
“People” object. To get someone’s name, the application would need
to access the People object.

Data of interest may reside in several business objects.

When creating an application, it is important to identify the business
object(s) that have data that will be queried and data that will be updated.

Identifying data to be transferred

2 CONVERSANT System Version 8.0 Application Development with Siebel eBusiness

Data on CONVERSANT

Data on CONVERSANT can be

� Collected directly from a caller (in a “prompt and collect” operation).

� Associated with the call (such as ANI or DNIS).

� Stored in a database.

� In a file.

Siebel overview

Issue 2, September 2001 3

Chapter 2 Setting up Siebel

Siebel overview

To access business objects, Siebel’s Business Integration Manager uses
a Siebel eAI (eBusiness Application Interface) Adapter, which translates
business objects or some of their components into "integration objects"
that can be used to create XML documents. Information can also go the
other way: integration objects can be translated into business objects or
some of their components through the eAI Adapter. Note that parts of
several different business objects can be included in a single integration
object.

The management of data within Siebel eBusiness is done using
"workflows", which are customizable processes and rules. They control
access, assembly, and distribution of integration objects. A workflow can
deal with queries, updates, or both.

XML documents are exchanged with external applications (on a
CONVERSANT) via HTTP using the Business Integration Manager’s
XML Gateway and HTTP Gateway.

See the Siebel 2000 Bookshelf for more information.

Setting up Siebel

4 CONVERSANT System Version 8.0 Application Development with Siebel eBusiness

Integration objects

Integration objects, like business objects, are made of components,
which themselves are made of fields, as shown in the figure "Part of a
typical integration object" on page 4. This is comparable to the parent-
child-data relationships found in XML.

Siebel eBusiness has the ability to create integration objects using the
Integration Object Builder through Siebel Tools (see the Siebel 2000
Bookshelf: Siebel Integration Guide for instructions).

Part of a typical integration object

Workflows

Issue 2, September 2001 5

Workflows

Workflows need to be created to enable the proper operations to be done
within Siebel eBusiness. One or more workflows may be used,
depending on the customer’s needs.

A sample workflow for a query is shown in the figure "Sample workflow
(query)" on page 5. In this workflow, an XML document is received from
CONVERSANT, a Siebel database is queried, and an XML document is
prepared and sent to CONVERSANT.

Sample workflow (query)

The figure "Sample workflow (update)" on page 5 shows a sample
workflow for an update. In this case, data is inserted into a Siebel
database after Siebel eBusiness receives an XML document from
CONVERSANT. An XML document is prepared and sent to
CONVERSANT.

Sample workflow (update)

The Siebel Workflow Guide in the Siebel Bookshelf describes how to set
up workflows.

Setting up Siebel

6 CONVERSANT System Version 8.0 Application Development with Siebel eBusiness

Document Type Definitions

XML files are generally used to transport data across networks using
Hypertext Transfer Protocol (HTTP). Document type definitions (DTDs)
provide information about how XML documents are formed.

Siebel eBusiness has the equivalent of a DTD for every integration
object, which it uses to create outgoing XML documents and to decide
whether incoming XML documents have the proper format (the
documents are “validated” by Siebel eBusiness). CONVERSANT does
not use DTDs at all, but DTDs generated by Siebel eBusiness can be
used to construct CONVERSANT applications which will be able to send
and interpret XML files.

To create a DTD, generate a schema for the integration object within
Siebel eBusiness.

In the examples below, separate integration objects exist for query and
update operations. Note that this may be the case more often than
having one DTD for both operations:

Sample query DTD

<!-- Copyright (C) 1994, Siebel Systems, L.P., All rights
reserved. -->
<!-- Siebel DTD Generation -->
<!ELEMENT BubbaAccountDetail (FincorpAccount+) >
<!ELEMENT FincorpAccount (AccountNumber?,

RelationshipLimit?,
CurrentBalance?,
LastName?)>

<!ELEMENT AccountNumber (#PCDATA) >
<!ELEMENT RelationshipLimit (#PCDATA) >
<!ELEMENT CurrentBalance (#PCDATA) >
<!ELEMENT LastName (#PCDATA) >

Document Type Definitions

Issue 2, September 2001 7

Sample update DTD

<!-- Copyright (C) 1994, Siebel Systems, L.P., All rights
reserved. -->
<!-- Siebel DTD Generation -->
<!ELEMENT BubbaFundsTransferSr (FundsTransferSR+) >
<!ELEMENT FundsTransferSR (ContactFinancialAccounts?,

ContactLastName?,
FundsTransferFromAccountNumber?,
FundsTransferToAccountNumber?,
FundsTransferDollarAmount?,
TransactionId?,
SRNumber?)>

<!ELEMENT ContactFinancialAccounts (#PCDATA) >
<!ELEMENT ContactLastName (#PCDATA) >
<!ELEMENT FundsTransferFromAccountNumber (#PCDATA) >
<!ELEMENT FundsTransferToAccountNumber (#PCDATA) >
<!ELEMENT FundsTransferDollarAmount (#PCDATA) >
<!ELEMENT TransactionId (#PCDATA) >
<!ELEMENT SRNumber (#PCDATA) >

The DTD is used by the application differently for reading incoming
documents and creating outgoing documents. Every XML document
must match the element definitions given in the DTD.

� For XML documents being received by CONVERSANT, the element
names need to be known so that the application can parse the
document and extract the data.

� For XML documents being sent by CONVERSANT, an XML
template can be created separately by the developer, which is then
used to build the XML documents that will be sent. The documents
are always populated with data. For queries, this data will typically
be a key field. Updates include data that will be put into a Siebel
database.

Setting up Siebel

8 CONVERSANT System Version 8.0 Application Development with Siebel eBusiness

Overview

Issue 2, September 2001 9

Chapter 3 XML templates

Overview

XML documents sent from CONVERSANT to Siebel eBusiness, whether
they be for queries or updates, can be constructed using XML templates
that derive from the DTDs supplied by Siebel eBusiness for the related
integration objects.

As mentioned in Chapter 2: Setting up Siebel on page 3, a DTD provides
the application developer with the structure of the XML document that
Siebel eBusiness expects. Of principal importance are:

� Element names.

� Element order.

� Data types.

A template has two main features:

� A header, which tells Siebel eBusiness which integration object is
being addressed.

� A body of tag pairs, each having either no content or reusable
content.

XML templates

10 CONVERSANT System Version 8.0 Application Development with Siebel eBusiness

Interpreting DTDs

Following is a brief discussion of how to interpret DTDs.

The structure of a DTD can be seen by example:

<!-- Copyright (C) 1994, Siebel Systems, L.P., All rights
reserved. -->
<!-- Siebel DTD Generation -->
<!ELEMENT BubbaFundsTransferSr (FundsTransferSR+) >
<!ELEMENT FundsTransferSR (ContactFinancialAccounts?,

ContactLastName?,
FundsTransferFromAccountNumber?,
FundsTransferToAccountNumber?,
FundsTransferDollarAmount?,

TransactionId?,
SRNumber?)>

<!ELEMENT ContactFinancialAccounts (#PCDATA) >
<!ELEMENT ContactLastName (#PCDATA) >
<!ELEMENT FundsTransferFromAccountNumber (#PCDATA) >
<!ELEMENT FundsTransferToAccountNumber (#PCDATA) >
<!ELEMENT FundsTransferDollarAmount (#PCDATA) >
<!ELEMENT TransactionId (#PCDATA) >
<!ELEMENT SRNumber (#PCDATA) >

The first two lines

<!-- Copyright (C) 1994, Siebel Systems, L.P., All rights
reserved. -->
<!-- Siebel DTD Generation -->

are the header. The Siebel header will not be used in the XML template.

The remainder of the DTD defines the elements expected in the body of
the XML document. Each line is called an “element declaration”, as
identified by the !ELEMENT label.

An element declaration typically has two parts:

1. The name of the element, identified by a tag.

2. A description of the element’s contents (enclosed in perentheses).

In the example,

<!ELEMENT SRNumber (#PCDATA) >

SRNumber is the element name, and #PCDATA describes the contents as
parsed character data.

Interpreting DTDs

Issue 2, September 2001 11

Slightly more complicated is the line

<!ELEMENT FundsTransferSR (ContactFinancialAccounts?,
ContactLastName?,
FundsTransferFromAccountNumber?,
FundsTransferToAccountNumber?,
FundsTransferDollarAmount?,
TransactionId?,
SRNumber?)>

In this case, the contents of the element are a set of child elements,
where each child’s name is separated by a comma. Note that a “?”, “*”, or
“+” following a child name indicates the number of instances of the
element that are allowed (zero or more instances can be present
between tags for “?” or “*”; zero or more instances must be present for
“+”).

XML templates

12 CONVERSANT System Version 8.0 Application Development with Siebel eBusiness

Creating the template

The XML template will need to be created and stored as a file on the
CONVERSANT. A header naming the integration object will need to be
added to the tag pairs (start and end tags) derived from the DTD. The
header takes the form

<SiebelMessage MessageID=””
MessageType=”IntegrationObject”
IntObjectName=”IntegObjName”>

Where IntegObjName is the name of the integration object.

The DTD example shown above would be translated into the following
template:

<SiebelMessage MessageID=””
MessageType=”IntegrationObject”
IntObjectName=”IntegObjName”>
<BubbaFundsTransferSr>
<FundsTransferSR>
<ContactFinancialAccounts></ContactFinancialAccoun
ts>
<ContactLastName></ContactLastName>
<FundsTransferFromAccountNumber></FundsTransferFro
mAccountNumber>
<FundsTransferToAccountNumber></FundsTransferToAcc
ountNumber>
<FundsTransferDollarAmount></FundsTransferDollarAm
ount>
<TransactionId></TransactionId>
<SRNumber></SRNumber>
</FundsTransferSR>
</BubbaFundsTransferSr>
</SiebelMessage>

When using the template to update a Siebel eBusiness database, the
CONVERSANT application will populate the elements with data.

Overview

Issue 2, September 2001 13

Chapter 4 Queries and updates

Overview

CONVERSANT communicates with Siebel eBusiness using a plug-in
that is part of the Vonetix middleware by Gold Systems. An application
on CONVERSANT can make function calls to Vonetix that

� Prepare and send outgoing XML documents.

� Receive and process incoming XML documents.

What Siebel eBusiness actually receives from CONVERSANT is a set of
“form data” that includes the original XML document on CONVERSANT
along with special information that tells Siebel eBusiness what to do.

The Vonetix interface

Information flow between an application and Siebel eBusiness is
facilitated by specialized Vonetix functionality, which is illustrated in the
figure "CONVERSANT and the Vonetix Interface" on page 13.

CONVERSANT and the Vonetix Interface

Queries and updates

14 CONVERSANT System Version 8.0 Application Development with Siebel eBusiness

The Vonetix interface consists of the following parts:

� Java Gateway DIP.

Applications communicate directly with this data interface process,
which uses TCP/IP to pass information to the Vonetix Gateway.

� Vonetix Gateway.

This gateway sends requests to the Mini-Browser based upon
information received from the DIP.

� Mini-Browser.

The Mini-Browser is where XML documents are interrogated and
modified, and HTTP requests are sent to the Base Servlet.

� Base Servlet.

The Base Servlet receives HTTP requests from the Mini-Browser via
the Web Server and Tomcat Servlet, then relays them to the
Document Plug-In, tracking them by unique session names and
cookies.

� Document Plug-In.

The Document Plug-In relays HTTP requests and XML documents
between the Base Servlet and Siebel eBusiness.

Vonetix provides TAS functions to support the Document Plug-In, the
“Generic TAS Functions” and “Utilities TAS Functions” (see the latest
Vonetix Technical Training Guide or Data Channel Guide for a detailed
listing with descriptions and code examples).

Performing queries and updates

Issue 2, September 2001 15

Performing queries and updates

There are basic steps performed by a CONVERSANT application for
queries and updates.

Note that the Vonetix functions discussed in the steps below, unless
otherwise mentioned, will return a 0 if successful, or a negative number if
unsuccessful. See the Vonetix Return Code Table in the applicable
Vonetix Technical Training Guide or Data Channel Guide.

1. Prepare the original XML document.

a. Load the XML template.

Use the Vonetix vntxLoadDoc(SESSIONNAME, FILENAME)
function, where the argument FILENAME includes the path to
the template from the root directory.

b. Add content to one or more elements in the document.

This involves using the Vonetix vntxSetTag
(SESSIONNAME, TAGNAME, TAGNUMBER, TAGVALUE)
function for each element identified by the argumentsTAGNAME
and TAGNUMBER. The content of the element is substituted for
TAGVALUE.

2. Prepare form data for the HTTP request.

HTTP request form data is used to log on to Siebel eBusiness,
identify the XML document, and tell Siebel eBusiness what to do.

This form data consists of one or more fields that are logically tied
together by a session name, and are each created using the Vonetix
vntxSetFD(SESSIONNAME, FIELDNAME, FIELDVALUE)
function, where the argument FIELDNAME is the field’s name, and
the argument FIELDVALUE is the field’s value.

Each of the following fields needs to be defined:

a. SWEExtSource

The workflow name (Business Service Source), found in the
Siebel eBusiness config file.

b. SWEExtCmd

The command to be executed by Siebel eBusiness. The most
commonly used command is likely to be Execute.

c. UserName

The login name.

d. Password

The login password.

Queries and updates

16 CONVERSANT System Version 8.0 Application Development with Siebel eBusiness

3. Convert the original XML document into an encoded form data value.

The XML document must itself be turned into form data before
being sent by Vonetix. The Vonetix
VntxSetDocFD(SESSIONNAME, name) function does this,
where name is “SWEExtData”.

4. Send the form data.

The form data sent to Siebel eBusiness consists of the XML
document created from the XML template, coupled with the
HTTP request form data that was created in Step 2.

Use the Vonetix vntxPostDoc(SESSIONNAME, URL)
function, where the argument URL is the URL of the Website
with the Siebel eBusiness data.

An error code will be returned by Vonetix if Siebel eBusiness has
not responded within 20 seconds of the HTTP request.

5. Save the incoming XML document. (This step is optional, usually for
debugging purposes.)

Siebel eBusiness will respond to the POST command by sending a
document to CONVERSANT. The received document can be saved
regardless of whether the CONVERSANT application is doing a
query or an update.

Use the Vonetix vntxStoreDoc(SESSIONNAME,
FILENAME) function, where the argument FILENAME refers to the
path and name you choose for the file that will be stored.

6. Process the received XML document.

Extract the content of each element of interest. This will certainly be
done during a query, but may also be done after an update.

Use the Vonetix vntxGetTag(SESSIONNAME, TAGNAME,
TAGNUMBER, TAGTEXT) function. TAGTEXT is the name of the
variable that will store the content.

7. Clear form data.

After performing a query or update, the form data encoded XML
document and/or HTTP request form data may need to be cleared.
This action will not remove data saved in variables and stored XML
documents.

� Use the vntxClearSes(SESSIONNAME) function to clear
both the XML document and HTTP request form data.

� Use the vntxClearDoc(SESSIONNAME) function to clear
just the form data encoded XML document.

� Use the vntxClearFD(SESSIONNAME) function to clear just
the HTTP request form data.

Overview

Issue 2, September 2001 17

Chapter 5 Sample application

Overview

In this chapter, a sample application is described that includes both a
query and an update of information in Siebel eBusiness.

The application deals with the transfer of money from one bank account
to another. See Sample application flowchart - 1 on page 18 and Sample
application flowchart - 2 on page 19.

1. The application greets the caller.

2. The caller is taken to the main menu.

3. The main menu prompts the caller to select a type of account to edit.
One option is to speak to an operator.

4. The caller is prompted for the account number.

5. If the caller chose to speak to an operator, then Step 6 will be
followed. If the caller chose any other option, then Step 8 will be
followed.

6. The application uses the CTI feature to send the account number to
Siebel eBusiness via the CVCT server. The account number then
appears as a screen pop on the Siebel desktop. CTI is used by the
application to transfer the call to a Siebel agent.

7. The call ends.

8. The application queries Siebel eBusiness for the account balance
and the name of the account’s owner.

� If an error is received from Siebel eBusiness, then the caller is
informed and returned to the main menu. The caller can have a
maximum of three errors, after which the application terminates.

� The application speaks the account balance and name on the
account.

9. The second menu prompts the caller for the type of account to
transfer money from and the type of account to transfer money to.

10. The caller is prompted to enter the account numbers for the two
account types chosen in Step 9.

11. The caller is prompted to enter the amount of money to be
transferred.

12. Siebel eBusiness is queried for the validity of the account numbers

Sample application

18 CONVERSANT System Version 8.0 Application Development with Siebel eBusiness

entered in Step 11.

Any errors are reported to the caller, who is then routed back to the
main menu.

13. The caller is asked to confirm the transfer.

If the transfer is not confirmed, then the caller is routed to the main
menu.

14. The application updates the Siebel eBusiness database.

If there is an error, then the caller is informed of the error and then
routed to the main menu.

15. The application speaks the transaction code to the caller.

16. The caller is routed to the main menu.

Sample application flowchart - 1

Overview

Issue 2, September 2001 19

Sample application flowchart - 2

Sample application

20 CONVERSANT System Version 8.0 Application Development with Siebel eBusiness

XML documents

In the documents below, the account number has been included as a
“key” for accessing the customer’s information.

Query

<SiebelMessage MessageId=""
MessageType="Integration Object"
IntObjectName="Bubba Account Detail">
<BubbaAccountDetail>
<FincorpAccount>
<AccountNumber>999-999-999</AccountNumber>
</FincorpAccount>
</BubbaAccountDetail>
</SiebelMessage>

Query returned

<?xml version="1.0" encoding="UTF-8"?>
<SiebelMessage IntObjectName="Bubba Account
Detail" MessageId="" MessageType="Integration
Object">
<BubbaAccountDetail>
<FincorpAccount>
<AccountNumber>999-999-999</AccountNumber>
<RelationshipLimit>10000</RelationshipLimit>
<CurrentBalance>200000</CurrentBalance>
<LastName>Jordan</LastName>
</FincorpAccount>
</BubbaAccountDetail>
</SiebelMessage>

XML documents

Issue 2, September 2001 21

Update

<SiebelMessage MessageId=""
MessageType="Integration Object"
IntObjectName="Bubba Funds Transfer SR">
<BubbaFundsTransferSr>
<FundsTransferSR>
<ContactFinancialAccounts>999-999-
999</ContactFinancialAccounts>
<ContactLastName>Jordan</ContactLastName>
<FundsTransfer-FromAccountNumber>111-111-
111</FundsTransfer-FromAccountNumber>
<FundsTransfer-ToAccountNumber>555-555-
555</FundsTransfer-ToAccountNumber>
<FundsTransfer-DollarAmount>20000</FundsTransfer-
DollarAmount>
<TransactionId>IVR-Transfer-3</TransactionId>
</FundsTransferSR>
</BubbaFundsTransferSr>
</SiebelMessage>

Update returned

<?xml version="1.0" encoding="UTF-8"?>
<SiebelMessage IntObjectName="Bubba Funds Transfer
SR" MessageId="" MessageType="Integration Object">
<BubbaFundsTransferSr>
<FundsTransferSR>
<ContactFinancialAccounts>999-999-
999</ContactFinancialAccounts>
<ContactLastName>Jordan</ContactLastName>
<FundsTransferFromAccountNumber>111-111-
111</FundsTransferFromAccountNumber>
<FundsTransferToAccountNumber>555-555-
555</FundsTransferToAccountNumber>
<FundsTransferDollarAmount>20000</FundsTransferDol
larAmount>
<TransactionId>IVR-Transfer-3</TransactionId>
<SRNumber>1-NAX</SRNumber> </FundsTransferSR>
</BubbaFundsTransferSr>
</SiebelMessage>

Sample application

22 CONVERSANT System Version 8.0 Application Development with Siebel eBusiness

Voice@Work application detail

Following is Voice@Work output that shows parts of the sample
application. This discussion will focus on what is relevant to the
interactions with Siebel eBusiness.

The figure below ("Main menu" on page 22) shows the first set of nodes
for the application. As described in the Overview on page 17, the
application first answers the call and prompts the caller to select an
account to edit. One of the options is to speak to an operator.

Main menu

Voice@Work application detail

Issue 2, September 2001 23

Passing calls and information to a Siebel agent

If the caller chooses to talk to the operator, the application jumps to
PCaccountnumbercvct.

At the PCaccountnumbercvct node, the caller is prompted for an
account number. The account number is stored as a variable.

The following actions, shown in "PCaccountnumbercvct detail" on page
25 and described below, are function calls to the CTI DIP.

NOTE:
For information about the use of the CTI DIP, see CONVERSANT
System Version 8.0 Computer Telephony Integration, 585-352-200.

The call ID, ANI, DNIS, station extension, and skill/split hunt group
number are collected with the ctiCallInfo function (at
CtiCallInfo1), and the caller is placed on hold (with the ctiHold
function at node CtiHold1).

The application calls the Siebel agent with the ctiDial function at
node CtiDial1. The ctiDial function also passes the account
number as UUI information to Siebel eBusiness.

The ctiNotify function at CtiNotify1 lets the application know
whether the Siebel agent answers this call. The call ID of the call
transferred to the Siebel agent is also collected at this point.

The caller and Siebel agent can talk to eachother when the
ctiTransfer function is invoked by the application (at node
CtiTransfer1).

NOTE:
The call ID of both the caller and the Siebel agent need to be known
so they can be used as arguments for the ctiTransfer function.
The call ID of the caller was collected at CtiCallInfo1, and the
call ID of the Siebel agent was collected at CtiNotify1.

At node CtiCallState2, the application uses the function
ctiCallState to determine if the call is still present on the
CONVERSANT port.

If the call is present, then the application frees up the CONVERSANT
port, leaving the caller and Siebel agent to talk independently of
CONVERSANT. The application does this by:

1. removing the connection with the caller with a ctiDiscon function
call at node DisCall1

Sample application

24 CONVERSANT System Version 8.0 Application Development with Siebel eBusiness

2. removing the connection with the Siebel agent with a ctiDiscon
function call at node DisCall2

The remaining actions deal with failures. There are just a few new nodes
introduced here.

� AnnQuit is an announcement thanking the caller for calling.

� CtiRetrieve1 uses the ctiRetrieve function to take the caller
out of the hold state. This makes the held call the active call.

� AnnounceCTIFail is an announcement notifying the caller that all
agents are busy.

Voice@Work application detail

Issue 2, September 2001 25

PCaccountnumbercvct detail

Sample application

26 CONVERSANT System Version 8.0 Application Development with Siebel eBusiness

Balance queries and fund transfers

If the caller chooses not to talk to an operator at the main menu, then the
application will perform a balance query and fund transfer. The main
menu is shown again in the figure below.

Main menu

PCAccNum (see "PCAccNum detail" on page 27) sets up and executes
both a balance query and the transfer of funds from one account to
another.

Voice@Work application detail

Issue 2, September 2001 27

PCAccNum detail

Query At the beginning of PCAccNum, Siebel eBusiness is queried for the
account balance and account owner’s name (in CFCheckAccNum).
DBTimeStamp is a debugging step. These steps are shown in the figure
"CFCheckAccNum detail" on page 28.

Sample application

28 CONVERSANT System Version 8.0 Application Development with Siebel eBusiness

CFCheckAccNum detail

Node Function Arguments

VntxLoadDoc2 VntxLoadDoc SESS=”firstacc”,
FILE=”/home/bankdemo/accQue
ry.xml”

VntxSetTag1 VntxSetTag SNAME=”firstacc”,
TNAME=”AccountNumber”,
TNUMB=1, VALUE=[AccNum]

VntxSetFD1 VntxSetFD SESS=”firstacc”,
NAME=”SWEExtSource”,
TEXT=”xmlquery”

VntxSetFD2 VntxSetFD SESS=”firstacc”,
NAME=”SWEExtCmd”,
TEXT=”Execute”

VntxSetFD3 VntxSetFD SESS=”firstacc”,
NAME=”UserName”,
TEXT=”SADMIN”

VntxSetFD4 VntxSetFD SESS=”firstacc”,
NAME=”Password”,
TEXT=”SADMIN”

Voice@Work application detail

Issue 2, September 2001 29

The XML template is loaded (VntxLoadDoc2), and is used as the
outgoing XML document after having its AccountNumber element
populated (in VntxSetTag1) with the account number that Siebel
eBusiness will use to look up the information wanted.

The VntxSetFD function is used to add form data in nodes
VntxSetFD1 (for SWEExtSource), VntxSetFD2 (for SWEExtCmd),
VntxSetFD3 (for UserName), and VntxSetFD4 (for Password).

The XML document is then converted into form data in node
VntxSetDocFD2, and POSTed to Siebel eBusiness in node
VntxPostDoc2.

A document is sent by Siebel eBusiness according to its workflow, and
processed via VntxStoreDoc1 as shown in "VntxStoreDoc1 detail" on
page 30.

VntxSetDocFD2 VntxSetDocFD SESS=”firstacc”,
DOC=”SWEExtData”

VntxPostDoc2 VntxPostDoc SESS=”firstacc”,
URL=”http://.../eai/start.swe”

Node Function Arguments

Sample application

30 CONVERSANT System Version 8.0 Application Development with Siebel eBusiness

VntxStoreDoc1 detail

Node Function Arguments

VntxStoreDoc1 VntxStoreDoc SNAME=”firstacc”,
FNAME=”/home/bankdemo/out/a
ccmaster.out”

VntxGetTagLimit VntxGetTag SNAME=”firstacc”,
TNAME=”RelationShipLimit”,
TNUMB=1,
ATEXT=[MainAccLimit]

VntxGetTagCName VntxGetTag SNAME=”firstacc”,
TNAME=”LastName”,
TNUMB=1,
ATEXT=[ContactLastName]

Voice@Work application detail

Issue 2, September 2001 31

VntxStoreDoc1 uses the VntxStoreDoc function to store the XML
document sent from Siebel eBusiness. Elements of interest are then
read from the XML document using the VntxGetTag function (this
function name is part of the relevant node names in the figure above).
After some manipulation of the information that was read, the HTTP
request form data is cleared (in VntxClearFD1), and then the form
data encoded XML document is also cleared (in VntxClearDoc1).

Setting up a
transfer

The second menu that the caller encounters is covered in the next part of
PCAccNum (see "Second menu detail" on page 32). In this part the
caller is prompted for the accounts to be used in the transfer. The
choices of the accounts are based upon the account type that the caller
chose in the main menu:

� PCMenuLoan is entered if the account type was “Loan”.

� PCFundMenu is entered if the account type was “Fund”.

� PCSaveMenu is entered if the account type was “Save”.

VntxGetTagAccNum VntxGetTag SNAME=”firstacc”,
TNAME=”CurrentBalance”,
TNUMB=1,
ATEXT=[CurrBalance]

VntxClearFD1 VntxClearFD SESS=”firstacc”

VntxClearDoc1 VntxClearDoc SESS=”firstacc”

Node Function Arguments

Sample application

32 CONVERSANT System Version 8.0 Application Development with Siebel eBusiness

Second menu detail

PCSaveMenu is typical of the process used for prompting the caller for
accounts and for transferring funds, as shown in "PCSaveMenu detail
(from PCAccNum)" on page 32:

PCSaveMenu detail (from PCAccNum)

Voice@Work application detail

Issue 2, September 2001 33

The caller selects which account money will be transferred from, and
which account the money will be transferred to. The application then
branches to the appropriate call flow (SetSVFromTo2,
SetSVFromTo3, or SetSVFromTo1) and performs the transfer
(CFPayment).

CFPayment starts with two account number queries (see "CFPayment
detail" on page 34). CFCheckFromAccNum queries Siebel eBusiness
for the number of the account that money will be taken from, and
CFCheckToAccNum queries Siebel eBusiness for the number of the
account that money will be transferred to. The form of these routines is
similar to that of CFCheckAccNum (see CFCheckAccNum detail on
page 28).

Sample application

34 CONVERSANT System Version 8.0 Application Development with Siebel eBusiness

CFPayment detail

The actual transfer of money, in the form of a Siebel eBusiness update,
occurs in PCConfirm (see "PCConfirm detail" on page 35).

Voice@Work application detail

Issue 2, September 2001 35

PCConfirm detail

Updating Siebel
eBusiness to
perform a transfer

CFUpdate has the update steps, as shown in "CFUpdate detail" on
page 35.

CFUpdate detail

Sample application

36 CONVERSANT System Version 8.0 Application Development with Siebel eBusiness

Node Function Argument

VntxLoadLast VntxLoadDoc SESS=”last”,
FILE=”/home/bankdemo/accUpd
ate.xml”

VntxSetTag8 VntxSetTag SNAME=”last”,
TNAME=”ContactFinancialAccou
nts”, TNUMB=1,
VALUE=[AccNum]

VntxSetTag1 VntxSetTag SNAME=”last”,
TNAME=”ContactLastName”,
TNUMB=1,
VALUE=[ContactLastName]

Voice@Work application detail

Issue 2, September 2001 37

VntxSetTag2 VntxSetTag SNAME=”last”,
TNAME=”FundsTransferFromAc
countNumber”, TNUMB=1,
VALUE=[FAccNum]

VntxSetTag3 VntxSetTag SNAME=”last”,
TNAME=”FundsTransferToAcco
untNumber”, TNUMB=1,
VALUE=[TAccNum]

VntxSetTag4 VntxSetTag SNAME=”last”,
TNAME=”FundsTransferDollarA
mount”, TNUMB=1,
VALUE=[TransAmount]

VntxSetTag5 VntxSetTag SNAME=”last”,
TNAME=”TransactionID”,
TNUMB=1, VALUE=[TransID]

VntxSetFD1 VntxSetFD SESS=”last”,
NAME=”SWEExtSource”,
TEXT=”xmlupdate”

VntxSetFD2 VntxSetFD SESS=”last”,
NAME=”SWEExtCmd”,
TEXT=”Execute”

VntxSetFD3 VntxSetFD SESS=”last”,
NAME=”UserName”,
TEXT=”SADMIN”

VntxSetFD4 VntxSetFD SESS=”last”,
NAME=”Password”,
TEXT=”SADMIN”

VntxSetDocFD2 VntxSetDocFD SESS=”last”,
DOC=”SWEExtData”

VntxPostDoc2 VntxPostDoc SESS=”last”,
URL=”http://.../eai/start.swe”

VntxStoreDoc3 VntxStoreDoc SNAME=”last”,
FNAME=”/home/bankdemo/out/a
ccUpdate.out”

VntxGetTag1 VntxGetTag SNAME=”last”,
TNAME=”SRNumber”,
TNUMB=1, ATEXT=[SRNum]

Node Function Argument

Sample application

38 CONVERSANT System Version 8.0 Application Development with Siebel eBusiness

The XML template is loaded by VntxLoadLast, and elements are
populated using the VntxSetTag function to tell Siebel eBusiness,
along with various identifying information, which account numbers to use
(elements FundsTransferFromAccountNumber and
FundsTransferToAccountNumber), and how much to transfer
(element FundsTransferDollarAmount). The returned document is
then stored, an element is read, and form data is cleared.

VntxClearFD1 VntxClearFD SESS=”last”

VntxClearDoc1 VntxClearDoc SESS=”last”

Node Function Argument

Siebel eBusiness

Issue 2, September 2001 39

Appendix A References

Siebel eBusiness

� Siebel 2000 Bookshelf (Siebel Systems, 2000).

CONVERSANT

� CONVERSANT System Version 8.0 Computer Telephony
Integration, 585-352-200.

� Vonetix 2.1 Developer Guide (Gold Systems, 2000).

For more information, see http://www.goldsys.com/products/ .

http://www.goldsys.com/products/
http://www.goldsys.com/products/
http://www.goldsys.com/products/

References

40 CONVERSANT System Version 8.0 Application Development with Siebel eBusiness

We’d like your opinion.

Avaya welcomes your feedback on this information product. Your comments can be of great value in
helping us improve the information that supports our products.

CONVERSANT System Version 8.0 Application Development with Siebel eBusiness,
585-310-784, Issue 2, September 2001

1. Please rate the effectiveness of this document in the following areas:

2. Please check the ways you feel we could improve this document:

Please add details about your concern.__

3. What did you like most about this document?___

4. Feel free to write any comments below or on an attached sheet.____________________________

If we may contact you concerning your comments, please complete the following:

Name:___Telephone Number: ()

Company/Organization______________________________________Date:___________________

Address:___

When you have completed this form, please fax to (303) 538-1741. Thank you.

Excellent Good Fair Poor

Ease of Finding
Information
Clarity
Completeness
Accuracy
Organization
Appearance
Examples
Illustrations
Overall Satisfaction

� Improve the overview/introduction � Make it more concise

� Improve the table of contents � Add more step-by-step procedures/tutorials
� Improve the organization � Add more troubleshooting information
� Add more figures � Make it less technical

� Add more examples � Add more/better quick reference aids
� Add more detail � Improve the index

	Introduction
	Prerequisites
	Basic concepts
	Creating an application

	Chapter 1 Identifying data to be transferred
	Data on Siebel eBusiness
	Data on CONVERSANT

	Chapter 2 Setting up Siebel
	Siebel overview
	Integration objects
	Workflows
	Document Type Definitions

	Chapter 3 XML templates
	Overview
	Interpreting DTDs
	Creating the template

	Chapter 4 Queries and updates
	Overview
	The Vonetix interface
	Performing queries and updates

	Chapter 5 Sample application
	Overview
	XML documents
	Query
	Query returned
	Update
	Update returned

	Voice@Work application detail
	Passing calls and information to a Siebel agent
	Balance queries and fund transfers
	Query
	Setting up a transfer
	Updating Siebel eBusiness to perform a transfer

	Appendix A References
	Siebel eBusiness
	CONVERSANT

